A key component of fact verification is thevevidence retrieval, often from multiple documents. Recent approaches use dense representations and condition the retrieval of each document on the previously retrieved ones. The latter step is performed over all the documents in the collection, requiring storing their dense representations in an index, thus incurring a high memory footprint. An alternative paradigm is retrieve-and-rerank, where documents are retrieved using methods such as BM25, their sentences are reranked, and further documents are retrieved conditioned on these sentences, reducing the memory requirements. However, such approaches can be brittle as they rely on heuristics and assume hyperlinks between documents. We propose a novel retrieve-and-rerank method for multi-hop retrieval, that consists of a retriever that jointly scores documents in the knowledge source and sentences from previously retrieved documents using an autoregressive formulation and is guided by a proof system based on natural logic that dynamically terminates the retrieval process if the evidence is deemed sufficient. This method is competitive with current state-of-the-art methods on FEVER, HoVer and FEVEROUS-S, while using $5$ to $10$ times less memory than competing systems. Evaluation on an adversarial dataset indicates improved stability of our approach compared to commonly deployed threshold-based methods. Finally, the proof system helps humans predict model decisions correctly more often than using the evidence alone.
translated by 谷歌翻译
Machine learning models are typically evaluated by computing similarity with reference annotations and trained by maximizing similarity with such. Especially in the bio-medical domain, annotations are subjective and suffer from low inter- and intra-rater reliability. Since annotations only reflect the annotation entity's interpretation of the real world, this can lead to sub-optimal predictions even though the model achieves high similarity scores. Here, the theoretical concept of Peak Ground Truth (PGT) is introduced. PGT marks the point beyond which an increase in similarity with the reference annotation stops translating to better Real World Model Performance (RWMP). Additionally, a quantitative technique to approximate PGT by computing inter- and intra-rater reliability is proposed. Finally, three categories of PGT-aware strategies to evaluate and improve model performance are reviewed.
translated by 谷歌翻译
Software Defect Prediction aims at predicting which software modules are the most probable to contain defects. The idea behind this approach is to save time during the development process by helping find bugs early. Defect Prediction models are based on historical data. Specifically, one can use data collected from past software distributions, or Versions, of the same target application under analysis. Defect Prediction based on past versions is called Cross Version Defect Prediction (CVDP). Traditionally, Static Code Metrics are used to predict defects. In this work, we use the Class Dependency Network (CDN) as another predictor for defects, combined with static code metrics. CDN data contains structural information about the target application being analyzed. Usually, CDN data is analyzed using different handcrafted network measures, like Social Network metrics. Our approach uses network embedding techniques to leverage CDN information without having to build the metrics manually. In order to use the embeddings between versions, we incorporate different embedding alignment techniques. To evaluate our approach, we performed experiments on 24 software release pairs and compared it against several benchmark methods. In these experiments, we analyzed the performance of two different graph embedding techniques, three anchor selection approaches, and two alignment techniques. We also built a meta-model based on two different embeddings and achieved a statistically significant improvement in AUC of 4.7% (p < 0.002) over the baseline method.
translated by 谷歌翻译
Wave propagation through nodes and links of a network forms the basis of spectral graph theory. Nevertheless, the sound emitted by nodes within the resonating chamber formed by a network are not well studied. The sound emitted by vibrations of individual nodes reflects the structure of the overall network topology but also the location of the node within the network. In this article, a sound recognition neural network is trained to infer centrality measures from the nodes' wave-forms. In addition to advancing network representation learning, sounds emitted by nodes are plausible in most cases. Auralization of the network topology may open new directions in arts, competing with network visualization.
translated by 谷歌翻译
Current technological advances open up new opportunities for bringing human-machine interaction to a new level of human-centered cooperation. In this context, a key issue is the semantic understanding of the environment in order to enable mobile robots more complex interactions and a facilitated communication with humans. Prerequisites are the vision-based registration of semantic objects and humans, where the latter are further analyzed for potential interaction partners. Despite significant research achievements, the reliable and fast registration of semantic information still remains a challenging task for mobile robots in real-world scenarios. In this paper, we present a vision-based system for mobile assistive robots to enable a semantic-aware environment perception without additional a-priori knowledge. We deploy our system on a mobile humanoid robot that enables us to test our methods in real-world applications.
translated by 谷歌翻译
电子健康记录(EHR)可获得的丰富纵向个体水平数据可用于检查治疗效果异质性。但是,使用EHR数据估算治疗效果提出了几个挑战,包括时变的混杂,重复和时间不一致的协变量测量,治疗分配和结果以及由于辍学导致的损失。在这里,我们开发了纵向数据(SDLD)算法的亚组发现,该算法是一种基于树的算法,用于使用纵向相互作用树算法结合使用纵向相互作用的一般数据驱动的方法,与纵向驱动的方法与纵向驱动的方法结合使用纵向相互作用,以发现具有异质治疗效果的亚组,并进行纵向研究。目标最大似然估计。我们将算法应用于EHR数据,以发现患有人免疫缺陷病毒(HIV)的人群的亚组,他们在接受非Dolutegravir抗逆转录病毒疗法(ART)接受非Dolutegravir抗逆转录病毒疗法(艺术)时的体重增加风险较高。
translated by 谷歌翻译
这项研究是有关阿拉伯历史文档的光学特征识别(OCR)的一系列研究的第二阶段,并研究了不同的建模程序如何与问题相互作用。第一项研究研究了变压器对我们定制的阿拉伯数据集的影响。首次研究的弊端之一是训练数据的规模,由于缺乏资源,我们的3000万张图像中仅15000张图像。另外,我们添加了一个图像增强层,时间和空间优化和后校正层,以帮助该模型预测正确的上下文。值得注意的是,我们提出了一种使用视觉变压器作为编码器的端到端文本识别方法,即BEIT和Vanilla Transformer作为解码器,消除了CNNs以进行特征提取并降低模型的复杂性。实验表明,我们的端到端模型优于卷积骨架。该模型的CER为4.46%。
translated by 谷歌翻译
数字双胞胎(DT)本质上是动态数据驱动的模型,可作为现实世界系统的实时共生“虚拟副本”。 DT可以利用动态数据驱动的应用系统(DDDAS)双向共生感应反馈循环的基本面来进行连续更新。因此,传感循环可以操纵测量,分析和重新配置,旨在在DT中进行更准确的建模和分析。重新配置决策可以是自主的或互动的,可以保持人类在循环中。这些决定的可信赖性可能会因理由的解释性不足而阻碍,并在实施替代方案之间对给定情况的决定中获得了实用性。此外,不同的决策算法和模型具有不同的复杂性,质量,并可能导致模型获得不同的效用。解释性的不足可能会限制人类可以评估决策的程度,通常会导致更新,这些更新不适合给定的情况,错误,损害了模型的整体准确性。本文的新颖贡献是一种利用人类界DDDA和DT系统中解释性的方法,利用双向共生感应反馈。该方法利用可解释的机器学习和目标建模来解释性,并考虑了获得的实用程序的权衡分析。我们使用智能仓储中的示例来演示这种方法。
translated by 谷歌翻译
自动驾驶的运动预测是一项艰巨的任务,因为复杂的驾驶场景导致静态和动态输入的异质组合。这是一个开放的问题,如何最好地表示和融合有关道路几何,车道连接,时变的交通信号状态以及动态代理的历史及其相互作用的历史。为了模拟这一不同的输入功能集,许多提出的方法旨在设计具有多种模态模块的同样复杂系统。这导致难以按严格的方式进行扩展,扩展或调整的系统以进行质量和效率。在本文中,我们介绍了Wayformer,这是一个基于注意力的运动架构,用于运动预测,简单而均匀。 Wayformer提供了一个紧凑的模型描述,该描述由基于注意力的场景编码器和解码器组成。在场景编码器中,我们研究了输入方式的早期,晚和等级融合的选择。对于每种融合类型,我们通过分解的注意力或潜在的查询关注来探索策略来折衷效率和质量。我们表明,尽管早期融合的结构简单,但不仅是情感不可知论,而且还取得了最先进的结果。
translated by 谷歌翻译
牛la脚是一种严重的疾病,会影响奶牛的生命周期和生活质量,并导致巨大的经济损失。早期的la悔检测有助于农民尽早解决疾病,并避免牛的变性引起的负面影响。我们收集了一个简短的奶牛的数据集,穿过走廊,从走廊出发,并注释了牛的la行。本文探讨了结果数据集,并提供了数据收集过程的详细说明。此外,我们提出了一种la行检测方法,该方法利用预先训练的神经网络从视频中提取判别特征,并为每个母牛分配二进制分数,表明其状况:“健康”或“ la脚”。我们通过强迫模型专注于牛的结构来改善这种方法,我们通过用训练有素的分割模型预测的二进制分割掩码来代替RGB视频来实现。这项工作旨在鼓励研究并提供有关计算机视觉模型在农场上的牛lo脚检测的适用性的见解。
translated by 谷歌翻译